Self-stochasticity in deterministic boundary value problems

This paper presents the experience of applying dynamical systems theory to an investigation into nonlinear boundary value problems for partial differential equations (PDE for short) in the case that their solutions become chaotic with time. To describe the long time behavior of such solutions, the c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Romanenko, E.Yu., Sharkovsky, A.N., Vereikina, M.B.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 1999
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169290
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Self-stochasticity in deterministic boundary value problems / E.Yu. Romanenko, A.N. Sharkovsky, M.B. Vereikina // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 174-184. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper presents the experience of applying dynamical systems theory to an investigation into nonlinear boundary value problems for partial differential equations (PDE for short) in the case that their solutions become chaotic with time. To describe the long time behavior of such solutions, the concept of self-stochasticity had been suggested. The results reported in this work are concerned linear systems of PDE with nonlinear boundary conditions; general ideas on the manner in which chaotic solutions may be described are set forth by the example of several simplest boundary value problems.