Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index
We consider first-order symmetric system Jy′ −A(t)y = λ∆(t)y with n×n-matrix coefficients defined on an interval [a, b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfies N− ≤ N+ = n. The main result is a parametrization of all pseudospectral functions...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169323 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index / V.I. Mogilevskii // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 220-264. — Бібліогр.: 38 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-169323 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1693232020-06-11T01:26:32Z Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index Mogilevskii, V.I. We consider first-order symmetric system Jy′ −A(t)y = λ∆(t)y with n×n-matrix coefficients defined on an interval [a, b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfies N− ≤ N+ = n. The main result is a parametrization of all pseudospectral functions σ(•) of any possible dimension nσ ≤ n by means of a Nevanlinna parameter τ = {C₀ (λ), C₁ (λ)}. 2017 Article Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index / V.I. Mogilevskii // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 220-264. — Бібліогр.: 38 назв. — англ. 1810-3200 2010 MSC. 34L10,47A06,47E05 http://dspace.nbuv.gov.ua/handle/123456789/169323 en Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider first-order symmetric system Jy′ −A(t)y = λ∆(t)y with n×n-matrix coefficients defined on an interval [a, b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfies N− ≤ N+ = n. The main result is a parametrization of all pseudospectral functions σ(•) of any possible dimension nσ ≤ n by means of a Nevanlinna parameter τ = {C₀ (λ), C₁ (λ)}. |
format |
Article |
author |
Mogilevskii, V.I. |
spellingShingle |
Mogilevskii, V.I. Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index Український математичний вісник |
author_facet |
Mogilevskii, V.I. |
author_sort |
Mogilevskii, V.I. |
title |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
title_short |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
title_full |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
title_fullStr |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
title_full_unstemmed |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
title_sort |
pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/169323 |
citation_txt |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index / V.I. Mogilevskii // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 220-264. — Бібліогр.: 38 назв. — англ. |
series |
Український математичний вісник |
work_keys_str_mv |
AT mogilevskiivi pseudospectralfunctionsofvariousdimensionsforsymmetricsystemswiththemaximaldeficiencyindex |
first_indexed |
2023-10-18T22:24:54Z |
last_indexed |
2023-10-18T22:24:54Z |
_version_ |
1796155455352864768 |