Approximate controllability of the wave equation with mixed boundary conditions

We consider initial boundary-value problem for acoustic equation in the time space cylinder Ω×(0, 2T) with unknown variable speed of sound, zero initial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part Σ × [0, T], Σ ⊂ ∂Ω of the lateral surface of the cy...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Pestov, L., Strelnikov, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169401
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Approximate controllability of the wave equation with mixed boundary conditions / L. Pestov, D. Strelnikov // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 251-263. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169401
record_format dspace
spelling irk-123456789-1694012020-06-13T01:27:10Z Approximate controllability of the wave equation with mixed boundary conditions Pestov, L. Strelnikov, D. We consider initial boundary-value problem for acoustic equation in the time space cylinder Ω×(0, 2T) with unknown variable speed of sound, zero initial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part Σ × [0, T], Σ ⊂ ∂Ω of the lateral surface of the cylinder Ω × (0, T). The domain of observation is Σ × [0, 2T], and the pressure on another part (∂Ω\Σ) × [0, 2T]) is assumed to be zero for any control. We prove the approximate boundary controllability for functions from the subspace V ⊂ H¹(Ω) whose traces have vanished on Σ provided that the observation time is 2T more than two acoustic radii of the domain Ω. We give an explicit procedure for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e., we are looking for a boundary control f which generates a wave uf such that uf (., T) approximates any prescribed harmonic function from V ). Moreover, using the Friedrichs–Poincar´e inequality, we obtain a conditional estimate for this BCP. Note that, for solving BCP for these harmonic functions, we do not need the knowledge of the speed of sound. 2018 Article Approximate controllability of the wave equation with mixed boundary conditions / L. Pestov, D. Strelnikov // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 251-263. — Бібліогр.: 14 назв. — англ. 1810-3200 2010 MSC. Primary 35R30; Secondary 35M33, 46E35 http://dspace.nbuv.gov.ua/handle/123456789/169401 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider initial boundary-value problem for acoustic equation in the time space cylinder Ω×(0, 2T) with unknown variable speed of sound, zero initial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part Σ × [0, T], Σ ⊂ ∂Ω of the lateral surface of the cylinder Ω × (0, T). The domain of observation is Σ × [0, 2T], and the pressure on another part (∂Ω\Σ) × [0, 2T]) is assumed to be zero for any control. We prove the approximate boundary controllability for functions from the subspace V ⊂ H¹(Ω) whose traces have vanished on Σ provided that the observation time is 2T more than two acoustic radii of the domain Ω. We give an explicit procedure for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e., we are looking for a boundary control f which generates a wave uf such that uf (., T) approximates any prescribed harmonic function from V ). Moreover, using the Friedrichs–Poincar´e inequality, we obtain a conditional estimate for this BCP. Note that, for solving BCP for these harmonic functions, we do not need the knowledge of the speed of sound.
format Article
author Pestov, L.
Strelnikov, D.
spellingShingle Pestov, L.
Strelnikov, D.
Approximate controllability of the wave equation with mixed boundary conditions
Український математичний вісник
author_facet Pestov, L.
Strelnikov, D.
author_sort Pestov, L.
title Approximate controllability of the wave equation with mixed boundary conditions
title_short Approximate controllability of the wave equation with mixed boundary conditions
title_full Approximate controllability of the wave equation with mixed boundary conditions
title_fullStr Approximate controllability of the wave equation with mixed boundary conditions
title_full_unstemmed Approximate controllability of the wave equation with mixed boundary conditions
title_sort approximate controllability of the wave equation with mixed boundary conditions
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/169401
citation_txt Approximate controllability of the wave equation with mixed boundary conditions / L. Pestov, D. Strelnikov // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 251-263. — Бібліогр.: 14 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT pestovl approximatecontrollabilityofthewaveequationwithmixedboundaryconditions
AT strelnikovd approximatecontrollabilityofthewaveequationwithmixedboundaryconditions
first_indexed 2023-10-18T22:25:06Z
last_indexed 2023-10-18T22:25:06Z
_version_ 1796155463608303616