Ергодичні деформації нелінійних гамільтонових систем та локальна гомеоморфність метричних просторів
Дослiджуються орбiти повiльно збурених гамiльтонових систем та асоцiйованi з ними ергодичнi деформацiї лагранжевих многовидiв. Основнi результати базуються на пiдходi Дж. Мазера [18, 19] до побудови гомологiй iнварiантних ймовiрнiсних мiр, що мiнiмiзують деякi лагранжевi функцiонали, а також на елiп...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2018
|
Назва видання: | Український математичний вісник |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/169408 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ергодичні деформації нелінійних гамільтонових систем та локальна гомеоморфність метричних просторів / Т.О. Банах, А.К. Прикарпатський // Український математичний вісник. — 2018. — Т. 15, № 3. — С. 332-344. — Бібліогр.: 27 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Дослiджуються орбiти повiльно збурених гамiльтонових систем та асоцiйованi з ними ергодичнi деформацiї лагранжевих многовидiв. Основнi результати базуються на пiдходi Дж. Мазера [18, 19] до побудови гомологiй iнварiантних ймовiрнiсних мiр, що мiнiмiзують деякi лагранжевi функцiонали, а також на елiптичнiй теорiї Громова–Саламона–Зендера–Флоєра [7, 9, 12, 20, 26] побудови iнварiантних многовидiв. В працi конструюються iнварiантнi пiдмноговиди, котрi є носiями iнварiантних ергодичних мiр та мають структуру локально гомеоморфних метричних просторiв. Аналiзується проблема конструювання ефективних критерiїв їх глобальної гомеоморфностi, сформульованої проф. А. М. Самойленком при дослiдженнi ергодичних деформацiй нелiнiйних гамiльтонових систем та їх адiабатичних iнварiантiв. Встановлено, що вiдображення f : X → Y з лiнiйно зв’язного гаусдорфового простору X в однозв’язний (зокрема, стягуваний) простiр Y є гомеоморфiзмом тодi i лише тодi, коли f локальним гомеоморфним i прообраз f⁻¹(y) кожної точки y ∈ Y є непорожньою компактною пiдмножиною в X. |
---|