Extremal decomposition of multidimensional complex space for five domains

The paper is devoted to one open extremal problem in the geometric function theory of complex variables associated with estimates of a functional defined on the systems of non-overlapping domains. We consider the problem of the maximum of a product of inner radii of n non-overlapping domains contain...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Zabolotni, i Y., Denega, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169414
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Extremal decomposition of multidimensional complex space for five domains / Y. Zabolotnii, I. Denega // Український математичний вісник. — 2018. — Т. 15, № 3. — С. 431-441. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The paper is devoted to one open extremal problem in the geometric function theory of complex variables associated with estimates of a functional defined on the systems of non-overlapping domains. We consider the problem of the maximum of a product of inner radii of n non-overlapping domains containing points of a unit circle and the power γ of the inner radius of a domain containing the origin. The problem was formulated in 1994 in Dubinin’s paper in the journal “Russian Mathematical Surveys” in the list of unsolved problems and then repeated in his monograph in 2014. Currently, it is not solved in general. In this paper, we obtained a solution of the problem for five simply connected domains and power γ ∈ (1, 2.57] and generalized this result to the case of multidimensional complex space.