Monogenic functions in commutative algebras associated with classical equations of mathematical physics

The methods involving the functions analytic in a complex plane for plane potential fields inspire the search for the analogous efficient methods for solving the spatial and multidimensional problems of mathematical physics. Many such methods are based on the mappings of hypercomplex algebras. The e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Plaksa, S.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169423
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Monogenic functions in commutative algebras associated with classical equations of mathematical physics / S.A. Plaksa // Український математичний вісник. — 2018. — Т. 15, № 4. — С. 543-575. — Бібліогр.: 101 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The methods involving the functions analytic in a complex plane for plane potential fields inspire the search for the analogous efficient methods for solving the spatial and multidimensional problems of mathematical physics. Many such methods are based on the mappings of hypercomplex algebras. The essence of the algebraic-analytic approach to elliptic equations of mathematical physics consists in the finding of a commutative Banach algebra such that the differentiable functions with values in this algebra have components satisfying the given equation with partial derivatives. The use of differentiable functions given in commutative Banach algebras combines the preservation of basic properties of analytic functions of a complex variable for the mentioned differentiable functions and the convenience and the simplicity of construction of solutions of PDEs. The paper contains the review of results reflecting the formation and the development of the mentioned approach.