Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space

We use our new type of bounded locally homeomorphic quasiregular mappings in the unit 3-ball to address long standing problems for such mappings, including the Vuorinen injectivity problem. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobordisms...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Apanasov, B.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169429
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hyperbolic topology and bounded locally homeomorphic quasiregular mappings in 3-space / B.N. Apanasov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 10-27. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We use our new type of bounded locally homeomorphic quasiregular mappings in the unit 3-ball to address long standing problems for such mappings, including the Vuorinen injectivity problem. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobordisms M with symmetric boundary components and whose interiors have complete 4-dimensional real hyperbolic structures. Such bounded locally homeomorphic quasiregular mappings are defined in the unit 3-ball B³ ⊂ R³ as mappings equivariant with the standard conformal action of uniform hyperbolic lattices Г ⊂ IsomH³ in the unit 3-ball and with its discrete representation G = ρ(Г) ⊂ IsomH⁴. Here, G is the fundamental group of our non-trivial hyperbolic 4-cobordism M = (H⁴∪Ω (G))/G, and the kernel of the homomorphism ρ: Г → G is a free group F₃ on three generators.