To the theory of semi-linear equations in the plane

In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z),whereas its reaction term f(u) is a continuous non-linear function. Assu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169434
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:To the theory of semi-linear equations in the plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 105-140. — Бібліогр.: 74 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169434
record_format dspace
spelling irk-123456789-1694342020-06-15T01:26:40Z To the theory of semi-linear equations in the plane Gutlyanskii, V.Ya. Nesmelova, O.V. Ryazanov, V.I. In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z),whereas its reaction term f(u) is a continuous non-linear function. Assuming that f(t)/t → 0 as t → ∞, we establish a theorem on existence of weak C(Ď )∩ W¹,² loc (D) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components. As consequences, we give applications to some concrete model semi-linear equations of mathematical physics, arising from modelling processes in anisotropic and inhomogeneous media. With a view to further development of the theory of boundary value problems for the semi-linear equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity. 2019 Article To the theory of semi-linear equations in the plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 105-140. — Бібліогр.: 74 назв. — англ. 1810-3200 2010 MSC. Primary 30C62, 31A05, 31A20, 31A25, 31B25, 35J61 Secondary 30E25, 31C05, 34M50, 35Q15 http://dspace.nbuv.gov.ua/handle/123456789/169434 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z),whereas its reaction term f(u) is a continuous non-linear function. Assuming that f(t)/t → 0 as t → ∞, we establish a theorem on existence of weak C(Ď )∩ W¹,² loc (D) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components. As consequences, we give applications to some concrete model semi-linear equations of mathematical physics, arising from modelling processes in anisotropic and inhomogeneous media. With a view to further development of the theory of boundary value problems for the semi-linear equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity.
format Article
author Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
spellingShingle Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
To the theory of semi-linear equations in the plane
Український математичний вісник
author_facet Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
author_sort Gutlyanskii, V.Ya.
title To the theory of semi-linear equations in the plane
title_short To the theory of semi-linear equations in the plane
title_full To the theory of semi-linear equations in the plane
title_fullStr To the theory of semi-linear equations in the plane
title_full_unstemmed To the theory of semi-linear equations in the plane
title_sort to the theory of semi-linear equations in the plane
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/169434
citation_txt To the theory of semi-linear equations in the plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 105-140. — Бібліогр.: 74 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT gutlyanskiivya tothetheoryofsemilinearequationsintheplane
AT nesmelovaov tothetheoryofsemilinearequationsintheplane
AT ryazanovvi tothetheoryofsemilinearequationsintheplane
first_indexed 2023-10-18T22:25:11Z
last_indexed 2023-10-18T22:25:11Z
_version_ 1796155467090624512