Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables

We investigate the slice holomorphic functions of several complex variables that have a bounded L-index in some direction and are entire on every slice {z⁰ + tb : t ∈ C} for every z⁰ ∈ Cⁿ and for a given direction b ∈ Cⁿ \ {0}. For this class of functions, we prove some criteria of boundedness of th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Bandura, A., Skaskiv, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169438
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables / A. Bandura, O. Skaskiv // Український математичний вісник. — 2019. — Т. 16, № 2. — С. 154-180. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169438
record_format dspace
spelling irk-123456789-1694382020-06-14T01:26:44Z Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables Bandura, A. Skaskiv, O. We investigate the slice holomorphic functions of several complex variables that have a bounded L-index in some direction and are entire on every slice {z⁰ + tb : t ∈ C} for every z⁰ ∈ Cⁿ and for a given direction b ∈ Cⁿ \ {0}. For this class of functions, we prove some criteria of boundedness of the L-index in direction describing a local behavior of the maximum and minimum moduli of a slice holomorphic function and give estimates of the logarithmic derivative and the distribution of zeros. Moreover, we obtain analogs of the known Hayman theorem and logarithmic criteria. They are applicable to the analytic theory of differential equations. We also study the value distribution and prove the existence theorem for those functions. It is shown that the bounded multiplicity of zeros for a slice holomorphic function F : Cⁿ → C is the necessary and sufficient condition for the existence of a positive continuous function L : Cⁿ → R₊ such that F has a bounded L-index in direction. The authors are thankful to Professor S. Yu. Favorov (Kharkiv) for the formulation of interesting problem. 2019 Article Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables / A. Bandura, O. Skaskiv // Український математичний вісник. — 2019. — Т. 16, № 2. — С. 154-180. — Бібліогр.: 31 назв. — англ. 1810-3200 2010 MSC. 32A10, 32A17, 32A37, 30H99, 30A05 http://dspace.nbuv.gov.ua/handle/123456789/169438 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We investigate the slice holomorphic functions of several complex variables that have a bounded L-index in some direction and are entire on every slice {z⁰ + tb : t ∈ C} for every z⁰ ∈ Cⁿ and for a given direction b ∈ Cⁿ \ {0}. For this class of functions, we prove some criteria of boundedness of the L-index in direction describing a local behavior of the maximum and minimum moduli of a slice holomorphic function and give estimates of the logarithmic derivative and the distribution of zeros. Moreover, we obtain analogs of the known Hayman theorem and logarithmic criteria. They are applicable to the analytic theory of differential equations. We also study the value distribution and prove the existence theorem for those functions. It is shown that the bounded multiplicity of zeros for a slice holomorphic function F : Cⁿ → C is the necessary and sufficient condition for the existence of a positive continuous function L : Cⁿ → R₊ such that F has a bounded L-index in direction.
format Article
author Bandura, A.
Skaskiv, O.
spellingShingle Bandura, A.
Skaskiv, O.
Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
Український математичний вісник
author_facet Bandura, A.
Skaskiv, O.
author_sort Bandura, A.
title Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_short Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_full Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_fullStr Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_full_unstemmed Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_sort some criteria of boundedness of the l-index in direction for slice holomorphic functions of several complex variables
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/169438
citation_txt Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables / A. Bandura, O. Skaskiv // Український математичний вісник. — 2019. — Т. 16, № 2. — С. 154-180. — Бібліогр.: 31 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT banduraa somecriteriaofboundednessofthelindexindirectionforsliceholomorphicfunctionsofseveralcomplexvariables
AT skaskivo somecriteriaofboundednessofthelindexindirectionforsliceholomorphicfunctionsofseveralcomplexvariables
first_indexed 2023-10-18T22:25:11Z
last_indexed 2023-10-18T22:25:11Z
_version_ 1796155467510054912