Двухэтапный проксимальный алгоритм для задачи о равновесии в пространстве Адамара

Предложен двухэтапный проксимальный алгоритм для приближенного решения задач о равновесии в пространствах Адамара. Данный алгоритм является аналогом ранее изученного двухэтапного алгоритма для задач о равновесии в гильбертовом пространстве. Для псевдомонотонных бифункций липшицевого типа доказана т...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Ведель, Я.И., Семёнов, В.В., Чабак, Л.М.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2020
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/170330
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Двухэтапный проксимальный алгоритм для задачи о равновесии в пространстве Адамара / Я.И. Ведель, В.В. Семёнов, Л.М. Чабак // Доповіді Національної академії наук України. — 2020. — № 2. — С. 7-14. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Предложен двухэтапный проксимальный алгоритм для приближенного решения задач о равновесии в пространствах Адамара. Данный алгоритм является аналогом ранее изученного двухэтапного алгоритма для задач о равновесии в гильбертовом пространстве. Для псевдомонотонных бифункций липшицевого типа доказана теорема о слабой сходимости порожденных алгоритмом последовательностей.