On solvability of inhomogeneous boundary-value problems in Sobolev—Slobodetskiy spaces

We investigate the most general class of Fredholm one-dimensional boundary-value problems in the Sobolev—Slobodetskiy spaces. Boundary conditions of these problems may contain a derivative of the whole or fractional order. It is established that each of these boundary-value problems corresponds to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Mikhailets, V.A., Skorobohach, T.V.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2020
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/170404
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On solvability of inhomogeneous boundary-value problems in Sobolev—Slobodetskiy spaces / V.A. Mikhailets, T.V. Skorobohach // Доповіді Національної академії наук України. — 2020. — № 4. — С. 10-14. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We investigate the most general class of Fredholm one-dimensional boundary-value problems in the Sobolev—Slobodetskiy spaces. Boundary conditions of these problems may contain a derivative of the whole or fractional order. It is established that each of these boundary-value problems corresponds to a certain rectangular numerical characteristic matrix with kernel and cokernel having the same dimension as the kernel and cokernel of the boundary- value problem. The sufficient conditions for the sequence of the characteristic matrices of a specified boundary-value problems to converge are found.