О разрешимости и асимптотике решений некоторого функционально-дифференциального уравнения с сингулярностью

Доведено існування неперервно диференційовних розв'язків з потрібними асимптотичними властивостями при t→+0 та визначено кількість розв'язків такої задачі Коші для функціонально-диференціального рівняння: α(t)x′(t) = at + b₁x(t) + b₂x(g(t)) + ϕ(t,x(t), x(g(t)), x′(h(t))), x(0)=0, де...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автор: Зернов, А.Е.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2001
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/172185
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О разрешимости и асимптотике решений некоторого функционально-дифференциального уравнения с сингулярностью / А.Е. Зернов // Український математичний журнал. — 2001. — Т. 53, № 4. — С. 455-465. — Бібліогр.: 10 назв. — рос.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Доведено існування неперервно диференційовних розв'язків з потрібними асимптотичними властивостями при t→+0 та визначено кількість розв'язків такої задачі Коші для функціонально-диференціального рівняння: α(t)x′(t) = at + b₁x(t) + b₂x(g(t)) + ϕ(t,x(t), x(g(t)), x′(h(t))), x(0)=0, де α : (0,τ) → (0,+∞), g:(0,τ)→(0,+∞), h:(0, τ)→(0,+∞) — неперервні функції, 0 < g(t) ≤ t, 0 < h(t) ≤ t, t ∈ (0, τ), α(t)x′(t) = at+b₁x(t)+b₂x(g(t))+ϕ(t,x(t),x(g(t)),x′(h(t))), x(0)=0, lim α(t)=0, коли t→+0, функція ϕ неперервна в деякій області