О разрешимости и асимптотике решений некоторого функционально-дифференциального уравнения с сингулярностью
Доведено існування неперервно диференційовних розв'язків з потрібними асимптотичними властивостями при t→+0 та визначено кількість розв'язків такої задачі Коші для функціонально-диференціального рівняння: α(t)x′(t) = at + b₁x(t) + b₂x(g(t)) + ϕ(t,x(t), x(g(t)), x′(h(t))), x(0)=0, де...
Збережено в:
Дата: | 2001 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2001
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/172185 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О разрешимости и асимптотике решений некоторого функционально-дифференциального уравнения с сингулярностью / А.Е. Зернов // Український математичний журнал. — 2001. — Т. 53, № 4. — С. 455-465. — Бібліогр.: 10 назв. — рос. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Доведено існування неперервно диференційовних розв'язків з потрібними асимптотичними властивостями при t→+0 та визначено кількість розв'язків такої задачі Коші для функціонально-диференціального рівняння:
α(t)x′(t) = at + b₁x(t) + b₂x(g(t)) + ϕ(t,x(t), x(g(t)), x′(h(t))), x(0)=0,
де α : (0,τ) → (0,+∞), g:(0,τ)→(0,+∞), h:(0, τ)→(0,+∞) — неперервні функції, 0 < g(t) ≤ t, 0 < h(t) ≤ t, t ∈ (0, τ),
α(t)x′(t) = at+b₁x(t)+b₂x(g(t))+ϕ(t,x(t),x(g(t)),x′(h(t))), x(0)=0, lim α(t)=0, коли t→+0,
функція ϕ неперервна в деякій області |
---|