Асимптотична поведінка цілих функій з винятковими значениями у співідношенні Бореля

Hexaй Mf(r) i μf(r) — відповідно максимум модуля i максимальний член цілої функції f, а l(r) — неперервно диференційовна i опукла відносно lnr фупкція. Встановлено, що для того щоб lnMf(r)∼lnμf(r),r→+∞ — для кожпої цілої функції f такої, що μf(r)∼l(r),r→+∞, необхідно i досить, щоб ln(rl'(r))=o(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автор: Филевич, П.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2001
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/172190
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Асимптотична поведінка цілих функій з винятковими значениями у співідношенні Бореля / П.В. Филевич // Український математичний журнал. — 2001. — Т. 53, № 4. — С. 522-530. — Бібліогр.: 7 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Схожі ресурси