Асимптотика по параметру решений уравнения Штурма-Лиувилля
Розглянуто диференціальне рівняння на скінченному відрізку [0,l] із параметром μ ∈ C, яке має вигляд (a(x)y′(x))′ + [μρ₁(x) + ρ₂(x)]y(x) = 0. За умов a(x), ρ(x) ∈ L∞[0,l], ρj(x) ∈ L₁[0,l], j = 1, 2, і майже скрізь a(x) ≥ m₀ > 0; ρ(x) ≥ m₁ > 0— абсолютно неперервна функція на [0,l], одержано...
Збережено в:
Дата: | 2001 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2001
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/172252 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Асимптотика по параметру решений уравнения Штурма-Лиувилля / А.М. Гомилко, В.Н. Пивоварчик // Український математичний журнал. — 2001. — Т. 53, № 6. — С. 742-757. — Бібліогр.: 17 назв. — укр. |