Формализм Остроградского для сингулярных лагранжианов с высшими производными
Метод побудови гамільтонова опису для невиродженої (регулярної) варіаційної задані довільного, порядку, запропонований М. В. Остроградським, узагальнюється на випадок вироджених (сингулярних) лагранжіанів. Саме такі лагранжіани становлять найбільший інтерес для сучасної теорії елементарних частинок....
Збережено в:
Дата: | 2001 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2001
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/172278 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Формализм Остроградского для сингулярных лагранжианов с высшими производными / В.В. Нестеренко // Український математичний журнал. — 2001. — Т. 53, № 8. — С. 1034-1037. — Бібліогр.: 35 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Метод побудови гамільтонова опису для невиродженої (регулярної) варіаційної задані довільного, порядку, запропонований М. В. Остроградським, узагальнюється на випадок вироджених (сингулярних) лагранжіанів. Саме такі лагранжіани становлять найбільший інтерес для сучасної теорії елементарних частинок. Для спрощення формул розглядається гамільтонізація варіаційної задачі, заданої сингулярним лагранжіаном другого порядку. Рівняння руху в фазовому просторі виводяться шляхом узагальнення методу М. В. Остроградського. Знайдено повний;набір зв'язків у теорії. |
---|