О равностепенно непрерывных факторах линейных расширений минима­льных динамических систем

Вводиться і досліджується поняття одностайно неперервного фактора лінійного розширення мінімальної групи перетворень. Основний результат полягає в тому, що гіідмножина обмеже­них і дистальних відносно розширення рухів утворює максимальне одностайно неперервне підрозшарування лінійного розширення. Як...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1993
Автор: Главан, В.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 1993
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/172552
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О равностепенно непрерывных факторах линейных расширений минима­льных динамических систем / В.А. Главан // Український математичний журнал. — 1993. — Т. 45, № 2. — С. 233–238. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Вводиться і досліджується поняття одностайно неперервного фактора лінійного розширення мінімальної групи перетворень. Основний результат полягає в тому, що гіідмножина обмеже­них і дистальних відносно розширення рухів утворює максимальне одностайно неперервне підрозшарування лінійного розширення. Як наслідок одержано, що будь-яке лінійне розширення має нетривіальне одностайно неперервне інваріантне підрозшарування. Таке ж саме підрозша-рування має і лінійне розширення без експоненціальної дихотомії за умови Фавара, так само, як і лінійне розширення з властивістю адитивності рекурентних рухів при наявності хоча б одного ненульового такого руху.