Response of an Indented Square Tube under Impact Loading
The dynamic buckling of the square tube with a V-shape indent under impact loading was investigated by experimental and numerical methods. The collapse modes of square tubes with different locations of indentation points were obtained experimentally. Numerical calculations of each experimental load...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2015
|
Назва видання: | Проблемы прочности |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/173279 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Response of an Indented Square Tube under Impact Loading / Z.H. Tan, L.S. Liu, Y.S. Sun, C. Cho // Проблемы прочности. — 2015. — № 1. — С. 179-186. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The dynamic buckling of the square tube with a V-shape indent under impact loading was investigated by experimental and numerical methods. The collapse modes of square tubes with different locations of indentation points were obtained experimentally. Numerical calculations of each experimental load case were conducted to analyze the effect of the indentation point location on the crush force and energy absorption of the tube. Numerical results agree well with the experimental ones. The results show that the indentation point location exerts a significant influence on the crush force and energy absorption. Compared to an indentation-free tube, the peak force of the indented tube is evidently reduced. The collapse process of the tube includes two buckling steps. The first one begins from the indentation either forward or backward with respect to the end until the folds are densified, then the second buckling starts backward or forward, which results in a second peak force in the collapse process. |
---|