A Probabilistic Model for Describing Short Fatigue Crack Growth Behavior of LZ50 Steel
Fatigue damage process of metal components and structures with smooth surface belongs primarily to stage of short fatigue crack. To characterize the random growth behavior of short fatigue crack and to apply the crack growth rate model for engineering safety assessment, a probabilistic model is prop...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2016
|
Назва видання: | Проблемы прочности |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/173423 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Probabilistic Model for Describing Short Fatigue Crack Growth Behavior of LZ50 Steel / B. Yang, B.Q. Ma, S.N. Xiao, Y.X. Zhao // Проблемы прочности. — 2016. — № 1. — С. 106-114. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Fatigue damage process of metal components and structures with smooth surface belongs primarily to stage of short fatigue crack. To characterize the random growth behavior of short fatigue crack and to apply the crack growth rate model for engineering safety assessment, a probabilistic model is proposed with consideration of the test data scattering regularity. This probabilistic model is based on the multi-microstructural barriers model and can describe the deceleration behavior of growth rate during the whole short fatigue crack propagation process. To take the statistical characteristics of whole test data into account, the idea from the general maximum likelihood method which is widely used in parameters estimation of fatigue S-N curves and ε-N curves is inherited. While estimating the parameters of the probabilistic model, conventional correlation coefficient optimization method is extended for calculating the parameters of both the mean curve and the standard deviation curve. Analysis on the test data of LZ50 steel indicates the reasonability and availability of present model. |
---|