A Comparative Study of Damage Performance of the Kill Element from Different Materials

For the design of the novel anti-explosive reactive armor tandem warhead, a prerequisite is to improve the reaming capacity and the damage performance of the preceding kill element so that the channel is ready for the subsequent penetration by the kill element. Meanwhile, the selection of appropriat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Yin, J.P., Gao, B.B., Wang, Z.J., Zhao, C.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2017
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/173579
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Comparative Study of Damage Performance of the Kill Element from Different Materials / J.P. Yin, B.B. Gao, Z.J. Wang, C.L. Zhao // Проблемы прочности. — 2017. — № 1. — С. 26-33. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-173579
record_format dspace
spelling irk-123456789-1735792020-12-13T01:25:54Z A Comparative Study of Damage Performance of the Kill Element from Different Materials Yin, J.P. Gao, B.B. Wang, Z.J. Zhao, C.L. Научно-технический раздел For the design of the novel anti-explosive reactive armor tandem warhead, a prerequisite is to improve the reaming capacity and the damage performance of the preceding kill element so that the channel is ready for the subsequent penetration by the kill element. Meanwhile, the selection of appropriate shaped charge liner material in the warhead could help enhance the integrated penetration performance of the kill element. Traditional shaped-charge liners made of metals or metal alloys with high density, high sound speed and good ductility are capable of forming a good-shape and stable jet kill element, which also demonstrate the advantages of large impact and high-performance penetration depth against the target. When the traditional liners are used to impact reactive armor, however, the weak reaming capacity and easily-induced charge explosions prevent the subsequent penetration of kill element into the main armor. In addition, the jet kill element formed by shaped-charge liners with low-density materials generally displays a low penetration depth against the reactive armor. In the present study, filled modifiedpolytetrafluoroethylene (PTFE) was selected as the material ofthe shaped charge liner. The damage performances on the armor from the kill elements formed with metallic or nonmetallic liners were evaluated and compared based on the numerical simulations and experimental studies. The results showed that the head diameter of the PTFE-Cu jet kill element was increased by 11.1% as compared to the PTFE jet kill element, and the former was twice as large as that of the copper jet kill element. The stronger reaming capacity against the target was essential for the opening of a channel for the tandem warhead’s subsequent element. In addition, when compared to the PTFE jet kill element, the penetration depth and the jet hole diameter of the PTFE-Cu one were increased by 45.8 and 12.6%, respectively, demonstrating the high damage potential of the PTFE-Cu jet kill element. Therefore, the present comparative analysis of the kill element damage performance with different materials under high-speed impact loading has provided a reference for the research and the design of the anti-armor tandem warhead with large penetration apertures and high damage performance. 2017 Article A Comparative Study of Damage Performance of the Kill Element from Different Materials / J.P. Yin, B.B. Gao, Z.J. Wang, C.L. Zhao // Проблемы прочности. — 2017. — № 1. — С. 26-33. — Бібліогр.: 15 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/173579 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Yin, J.P.
Gao, B.B.
Wang, Z.J.
Zhao, C.L.
A Comparative Study of Damage Performance of the Kill Element from Different Materials
Проблемы прочности
description For the design of the novel anti-explosive reactive armor tandem warhead, a prerequisite is to improve the reaming capacity and the damage performance of the preceding kill element so that the channel is ready for the subsequent penetration by the kill element. Meanwhile, the selection of appropriate shaped charge liner material in the warhead could help enhance the integrated penetration performance of the kill element. Traditional shaped-charge liners made of metals or metal alloys with high density, high sound speed and good ductility are capable of forming a good-shape and stable jet kill element, which also demonstrate the advantages of large impact and high-performance penetration depth against the target. When the traditional liners are used to impact reactive armor, however, the weak reaming capacity and easily-induced charge explosions prevent the subsequent penetration of kill element into the main armor. In addition, the jet kill element formed by shaped-charge liners with low-density materials generally displays a low penetration depth against the reactive armor. In the present study, filled modifiedpolytetrafluoroethylene (PTFE) was selected as the material ofthe shaped charge liner. The damage performances on the armor from the kill elements formed with metallic or nonmetallic liners were evaluated and compared based on the numerical simulations and experimental studies. The results showed that the head diameter of the PTFE-Cu jet kill element was increased by 11.1% as compared to the PTFE jet kill element, and the former was twice as large as that of the copper jet kill element. The stronger reaming capacity against the target was essential for the opening of a channel for the tandem warhead’s subsequent element. In addition, when compared to the PTFE jet kill element, the penetration depth and the jet hole diameter of the PTFE-Cu one were increased by 45.8 and 12.6%, respectively, demonstrating the high damage potential of the PTFE-Cu jet kill element. Therefore, the present comparative analysis of the kill element damage performance with different materials under high-speed impact loading has provided a reference for the research and the design of the anti-armor tandem warhead with large penetration apertures and high damage performance.
format Article
author Yin, J.P.
Gao, B.B.
Wang, Z.J.
Zhao, C.L.
author_facet Yin, J.P.
Gao, B.B.
Wang, Z.J.
Zhao, C.L.
author_sort Yin, J.P.
title A Comparative Study of Damage Performance of the Kill Element from Different Materials
title_short A Comparative Study of Damage Performance of the Kill Element from Different Materials
title_full A Comparative Study of Damage Performance of the Kill Element from Different Materials
title_fullStr A Comparative Study of Damage Performance of the Kill Element from Different Materials
title_full_unstemmed A Comparative Study of Damage Performance of the Kill Element from Different Materials
title_sort comparative study of damage performance of the kill element from different materials
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2017
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/173579
citation_txt A Comparative Study of Damage Performance of the Kill Element from Different Materials / J.P. Yin, B.B. Gao, Z.J. Wang, C.L. Zhao // Проблемы прочности. — 2017. — № 1. — С. 26-33. — Бібліогр.: 15 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT yinjp acomparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
AT gaobb acomparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
AT wangzj acomparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
AT zhaocl acomparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
AT yinjp comparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
AT gaobb comparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
AT wangzj comparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
AT zhaocl comparativestudyofdamageperformanceofthekillelementfromdifferentmaterials
first_indexed 2023-10-18T22:34:25Z
last_indexed 2023-10-18T22:34:25Z
_version_ 1796155871281020928