Analysis by Finite Element Method to Redesign a Jointed-Telescopic Crane for Elevation of Personnel

This paper proposes a numerical assessment of a crane for elevation of personnel by finite element analysis, validated with experimental data from constituent components of the crane. The original design of the crane consists of a jointed section of coplanar arms and a telescopic section of collinea...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Diosdado-De la Peña, J.A., Balvantín, A.J., Limón-Leyva, P.A., Pérez-Olivas, P.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2017
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/173672
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Analysis by Finite Element Method to Redesign a Jointed-Telescopic Crane for Elevation of Personnel / J.A. Diosdado-De la Peña, A.J. Balvantín, P.A. Limón-leyva, P.A. Pérez-olivas // Проблемы прочности. — 2017. — № 3. — С. 63-77. — Бібліогр.: 37 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper proposes a numerical assessment of a crane for elevation of personnel by finite element analysis, validated with experimental data from constituent components of the crane. The original design of the crane consists of a jointed section of coplanar arms and a telescopic section of collinear arms. As a reference, the standard ANSI/SIA 92.2 was used to determine maximum loads and the consequent effects on the constituent components of the crane. This standard is suitable for crane designs distributed and commercialized in Mexico. The proposed numerical analysis is carried out through a finite element analysis, which is based on the assembly method of kinematic pairs, taking into account dynamic loads and their resulting reaction at each element. The mechanical performance of each component is assessed with the minimal security factor parameter. However, in those components where the MSF was insufficiently in accordance with the standard, a variety of modifications to redesign a given component was proposed. Subsequently, a detailed structural analysis on the proposed redesign was carried out, in which higher security factors were obtained in comparison to the original design. Finally, the numerical results of the proposed redesign were validated through experimental measurements of strain, using strain gauges attached on a crane prototype, which was manufactured according to the proposed redesigned model.