Geometric nonlinear vibration analysis for pretensioned rectangular orthotropic membrane

The geometric nonlinear vibrations of pretensioned orthotropic membrane with four edges fixed, which is commonly applied in building membrane structure, are studied. The nonlinear partial differential governing equations are derived by von Kármán’s large deflection theory and D’Alembert’s principle....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Liu, C.J., Zheng, Z.L., Yang, X.Y., Guo, J.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут механіки ім. С.П. Тимошенка НАН України 2018
Назва видання:Прикладная механика
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/174161
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometric nonlinear vibration analysis for pretensioned rectangular orthotropic membrane / C.J. Liu, Z.L. Zheng, X.Y. Yang, J.J. Guo // Прикладная механика. — 2018. — Т. 54, № 1. — С. 122-141. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The geometric nonlinear vibrations of pretensioned orthotropic membrane with four edges fixed, which is commonly applied in building membrane structure, are studied. The nonlinear partial differential governing equations are derived by von Kármán’s large deflection theory and D’Alembert’s principle. Because of the strong nonlinearity of governing equations, the homotopy perturbation method (HPM) to solve them is applied. The approximate analytical solution of the vibration frequency and displacement function is obtained. In the computational example, the frequency, vibration mode and displacement as well as the time curve of each feature point are analyzed. It is proved that HPM is an effective, simple and high-precision method to solve the geometric nonlinear vibration problem of membrane structures. These results provide some valuable computational basis for the vibration control and dynamic design of building and other analogous membrane structures.