On boundary-value problems for generalized analytic and harmonic functions
The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called A-harmonic functions with arbitrary boundary data that are measurabl...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2020
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/174268 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On boundary-value problems for generalized analytic and harmonic functions / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2020. — № 12. — С. 11-18. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in
particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called
A-harmonic functions with arbitrary boundary data that are measurable with respect to the logarithmic capacity.
Here, we extend the corresponding results to generalized analytic functions h : D→C with sources g:∂žh = g∈Lᵖ, p > 2, and to generalized harmonic functions U with sources G : ΔU=G∈Lᵖ, p > 2. Our approach is based on the
geometric (functional-theoretic) interpretation of boundary values in comparison with the classical operator approach
in PDE. Here, we will establish the corresponding existence theorems for the Poincaré problem on directional
derivatives and, in particular, for the Neumann problem to the Poisson equations ΔU=G with arbitrary
boundary data that are measurable with respect to the logarithmic capacity. A few mixed boundary-value problems
are considered as well. These results can be also applied to semilinear equations of mathematical physics in anisotropic
and inhomogeneous media. |
---|