On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems
In this paper we investigate the existence of a positive solution of a second order singular Sturm – Liouville boundary-value problem, by constructing upper and lower solutions and combined them with properties of the consequent mapping. Applications to well known Emden – Fowler and Thomas – Ferm...
Збережено в:
Дата: | 2001 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2001
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/174692 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems / S.K. Ntouyas, P.K. Palamides // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 326-344. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-174692 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1746922021-01-28T01:27:01Z On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems Ntouyas, S.K. Palamides, P.K. In this paper we investigate the existence of a positive solution of a second order singular Sturm – Liouville boundary-value problem, by constructing upper and lower solutions and combined them with properties of the consequent mapping. Applications to well known Emden – Fowler and Thomas – Fermi boundary-value problems are also presented. Further we generalize some of O’Regan’s results, allowing constants in the boundary conditions to be negative. 2001 Article On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems / S.K. Ntouyas, P.K. Palamides // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 326-344. — Бібліогр.: 10 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/174692 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we investigate the existence of a positive solution of a second order singular Sturm –
Liouville boundary-value problem, by constructing upper and lower solutions and combined
them with properties of the consequent mapping. Applications to well known Emden – Fowler
and Thomas – Fermi boundary-value problems are also presented. Further we generalize some
of O’Regan’s results, allowing constants in the boundary conditions to be negative. |
format |
Article |
author |
Ntouyas, S.K. Palamides, P.K. |
spellingShingle |
Ntouyas, S.K. Palamides, P.K. On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems Нелінійні коливання |
author_facet |
Ntouyas, S.K. Palamides, P.K. |
author_sort |
Ntouyas, S.K. |
title |
On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems |
title_short |
On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems |
title_full |
On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems |
title_fullStr |
On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems |
title_full_unstemmed |
On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems |
title_sort |
on sturm - liouville and thomas - fermi singular boundary-value problems |
publisher |
Інститут математики НАН України |
publishDate |
2001 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/174692 |
citation_txt |
On Sturm - Liouville and Thomas - Fermi Singular Boundary-Value Problems / S.K. Ntouyas, P.K. Palamides // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 326-344. — Бібліогр.: 10 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT ntouyassk onsturmliouvilleandthomasfermisingularboundaryvalueproblems AT palamidespk onsturmliouvilleandthomasfermisingularboundaryvalueproblems |
first_indexed |
2023-10-18T22:36:56Z |
last_indexed |
2023-10-18T22:36:56Z |
_version_ |
1796155981282934784 |