On three solutions of the second order periodic boundary-value problem

We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological deg...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Draessler, J., Rachůnková, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2001
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/174763
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-174763
record_format dspace
spelling irk-123456789-1747632021-01-28T01:27:34Z On three solutions of the second order periodic boundary-value problem Draessler, J. Rachůnková, I. We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological degree and ´ present conditions implying nonzero values of the degree on sets defined by lower and upper functions. Using such results we prove the existence of at least three different solutions to the above problem. 2001 Article On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ. 1562-3076 AMS Subject Classification: 34B15, 34C25 http://dspace.nbuv.gov.ua/handle/123456789/174763 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological degree and ´ present conditions implying nonzero values of the degree on sets defined by lower and upper functions. Using such results we prove the existence of at least three different solutions to the above problem.
format Article
author Draessler, J.
Rachůnková, I.
spellingShingle Draessler, J.
Rachůnková, I.
On three solutions of the second order periodic boundary-value problem
Нелінійні коливання
author_facet Draessler, J.
Rachůnková, I.
author_sort Draessler, J.
title On three solutions of the second order periodic boundary-value problem
title_short On three solutions of the second order periodic boundary-value problem
title_full On three solutions of the second order periodic boundary-value problem
title_fullStr On three solutions of the second order periodic boundary-value problem
title_full_unstemmed On three solutions of the second order periodic boundary-value problem
title_sort on three solutions of the second order periodic boundary-value problem
publisher Інститут математики НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/174763
citation_txt On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT draesslerj onthreesolutionsofthesecondorderperiodicboundaryvalueproblem
AT rachunkovai onthreesolutionsofthesecondorderperiodicboundaryvalueproblem
first_indexed 2023-10-18T22:37:09Z
last_indexed 2023-10-18T22:37:09Z
_version_ 1796155991685857280