On three solutions of the second order periodic boundary-value problem
We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological deg...
Збережено в:
Дата: | 2001 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2001
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/174763 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-174763 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1747632021-01-28T01:27:34Z On three solutions of the second order periodic boundary-value problem Draessler, J. Rachůnková, I. We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the Caratheodory conditions. We extend results about the Leray – Schauder topological degree and ´ present conditions implying nonzero values of the degree on sets defined by lower and upper functions. Using such results we prove the existence of at least three different solutions to the above problem. 2001 Article On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ. 1562-3076 AMS Subject Classification: 34B15, 34C25 http://dspace.nbuv.gov.ua/handle/123456789/174763 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider the periodic boundary-value problem x'' + a(t)x' + b(t)x = f(t, x, x'), x(') =x(2π), x'(0) = x' (2π), where a, b are Lebesgue integrable functions and f fulfils the
Caratheodory conditions. We extend results about the Leray – Schauder topological degree and ´ present conditions implying nonzero values of the degree on sets defined by lower and upper
functions. Using such results we prove the existence of at least three different solutions to the
above problem. |
format |
Article |
author |
Draessler, J. Rachůnková, I. |
spellingShingle |
Draessler, J. Rachůnková, I. On three solutions of the second order periodic boundary-value problem Нелінійні коливання |
author_facet |
Draessler, J. Rachůnková, I. |
author_sort |
Draessler, J. |
title |
On three solutions of the second order periodic boundary-value problem |
title_short |
On three solutions of the second order periodic boundary-value problem |
title_full |
On three solutions of the second order periodic boundary-value problem |
title_fullStr |
On three solutions of the second order periodic boundary-value problem |
title_full_unstemmed |
On three solutions of the second order periodic boundary-value problem |
title_sort |
on three solutions of the second order periodic boundary-value problem |
publisher |
Інститут математики НАН України |
publishDate |
2001 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/174763 |
citation_txt |
On three solutions of the second order periodic boundary-value problem / J. Draessler, I. Rachůnková // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 471-486. — Бібліогр.: 6 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT draesslerj onthreesolutionsofthesecondorderperiodicboundaryvalueproblem AT rachunkovai onthreesolutionsofthesecondorderperiodicboundaryvalueproblem |
first_indexed |
2023-10-18T22:37:09Z |
last_indexed |
2023-10-18T22:37:09Z |
_version_ |
1796155991685857280 |