Stability of exact solutions of the cubic-quintic nonlinear Schrödinger equation with periodic potential
The nonlinear Schrodinger equation with attractive quintic nonlinearity in periodic potential in 1D, modelling a dilute gas Bose – Einstein condensate in a lattice potential, is considered and one family of exact stationary solutions is discussed. Some of these solutions have neither an analog in t...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/174969 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Stability of exact solutions of the cubic-quintic nonlinear Schrödinger equation with periodic potential / E. Kengne, R. Vaillancourt // Нелінійні коливання. — 2010. — Т. 13, № 4. — С. 533-545. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The nonlinear Schrodinger equation with attractive quintic nonlinearity in periodic potential in 1D, modelling a dilute gas Bose – Einstein condensate in a lattice potential, is considered and one family of exact
stationary solutions is discussed. Some of these solutions have neither an analog in the linear Schrodinger
equation nor in the integrable nonlinear Schrodinger equation. Their stability is examined analytically and
numerically. |
---|