Triple positive solutions for a class of two-point boundary-value problems. A fundamental approach

In this paper, we prove the existence of three positive and concave solutions, by means of an elementary simple approach, to the 2th order two-point boundary-value problem x''(t) = α(t)f(t, x(t), x'(t)), 0 < t < 1, x(0) = x(1) = 0,. We rely on a combination of the analysis of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Palamides, P.K., Palamides, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/175589
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Triple positive solutions for a class of two-point boundary-value problems. A fundamental approach / P.K. Palamides, A.P. Palamides // Нелінійні коливання. — 2012. — Т. 15, № 2. — С. 233-243. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper, we prove the existence of three positive and concave solutions, by means of an elementary simple approach, to the 2th order two-point boundary-value problem x''(t) = α(t)f(t, x(t), x'(t)), 0 < t < 1, x(0) = x(1) = 0,. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Kneser’s type properties of the solutions funnel and the Schauder’s fixed point theorem. The obtained results justify the simplicity and efficiency (one could study the problem with more general boundary conditions) of our new approach compared to the commonly used ones, like the Leggett – Williams Fixed Point Theorem and its generalizations.