Elastic phase transitions in solids. High pressure effect
At high pressures (the pressure is comparable with the bulk modulus) the crystalline lattice may become unstable relative to the uniform shear deformations, and in a result the low symmetric crystalline structures will appear (the so-called “elastic phase transitions”). The order parameters at these...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2018
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/176171 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Elastic phase transitions in solids. High pressure effect / Yu.Kh. Vekilov, O.M. Krasilnikov // Физика низких температур. — 2018. — Т. 44, № 6. — С. 758-764. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-176171 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1761712021-02-04T01:30:29Z Elastic phase transitions in solids. High pressure effect Vekilov, Yu.Kh. Krasilnikov, O.M. Специальный выпуск К 90-летию со дня рождения A.A. Абрикосова At high pressures (the pressure is comparable with the bulk modulus) the crystalline lattice may become unstable relative to the uniform shear deformations, and in a result the low symmetric crystalline structures will appear (the so-called “elastic phase transitions”). The order parameters at these transitions are the components of the finite deformations tensor. The stability of the high-pressure phases is defined by the nonlinear elasticity of the lattice (the third, fourth etc. order elastic constants). Here the different cases of the stability loss at hydro-static pressure for the cubic structures are considered. The relation between the second, third and fourth order elastic constants is given, which defines the possibility of the first order deformation phase transition. The jump of the order parameter and the height of the potential barrier are defined by the third and fourth order elastic constants. As an example, the experimentally observed elastic phase transition in vanadium at P ≈ 69 GPa from bcc to the rhombohedral phase is analyzed, and the possible structural transitions in bcc Mo and W at P ≥ 700 GPa are also considered. 2018 Article Elastic phase transitions in solids. High pressure effect / Yu.Kh. Vekilov, O.M. Krasilnikov // Физика низких температур. — 2018. — Т. 44, № 6. — С. 758-764. — Бібліогр.: 30 назв. — англ. 0132-6414 PACS: 61.50.Ks, 61.66.Bi, 62.20.D–, 62.50.–p http://dspace.nbuv.gov.ua/handle/123456789/176171 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Специальный выпуск К 90-летию со дня рождения A.A. Абрикосова Специальный выпуск К 90-летию со дня рождения A.A. Абрикосова |
spellingShingle |
Специальный выпуск К 90-летию со дня рождения A.A. Абрикосова Специальный выпуск К 90-летию со дня рождения A.A. Абрикосова Vekilov, Yu.Kh. Krasilnikov, O.M. Elastic phase transitions in solids. High pressure effect Физика низких температур |
description |
At high pressures (the pressure is comparable with the bulk modulus) the crystalline lattice may become unstable relative to the uniform shear deformations, and in a result the low symmetric crystalline structures will appear (the so-called “elastic phase transitions”). The order parameters at these transitions are the components of the finite deformations tensor. The stability of the high-pressure phases is defined by the nonlinear elasticity of the lattice (the third, fourth etc. order elastic constants). Here the different cases of the stability loss at hydro-static pressure for the cubic structures are considered. The relation between the second, third and fourth order elastic constants is given, which defines the possibility of the first order deformation phase transition. The jump of the order parameter and the height of the potential barrier are defined by the third and fourth order elastic constants. As an example, the experimentally observed elastic phase transition in vanadium at P ≈ 69 GPa from bcc to the rhombohedral phase is analyzed, and the possible structural transitions in bcc Mo and W at P ≥ 700 GPa are also considered. |
format |
Article |
author |
Vekilov, Yu.Kh. Krasilnikov, O.M. |
author_facet |
Vekilov, Yu.Kh. Krasilnikov, O.M. |
author_sort |
Vekilov, Yu.Kh. |
title |
Elastic phase transitions in solids. High pressure effect |
title_short |
Elastic phase transitions in solids. High pressure effect |
title_full |
Elastic phase transitions in solids. High pressure effect |
title_fullStr |
Elastic phase transitions in solids. High pressure effect |
title_full_unstemmed |
Elastic phase transitions in solids. High pressure effect |
title_sort |
elastic phase transitions in solids. high pressure effect |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2018 |
topic_facet |
Специальный выпуск К 90-летию со дня рождения A.A. Абрикосова |
url |
http://dspace.nbuv.gov.ua/handle/123456789/176171 |
citation_txt |
Elastic phase transitions in solids. High pressure effect / Yu.Kh. Vekilov, O.M. Krasilnikov // Физика низких температур. — 2018. — Т. 44, № 6. — С. 758-764. — Бібліогр.: 30 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT vekilovyukh elasticphasetransitionsinsolidshighpressureeffect AT krasilnikovom elasticphasetransitionsinsolidshighpressureeffect |
first_indexed |
2023-10-18T22:40:39Z |
last_indexed |
2023-10-18T22:40:39Z |
_version_ |
1796156143674851328 |