Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains

We present a brief discussion of the phase-coherent dynamics of discrete breathers (intrinsic localized modes) in a system of two weakly coupled nonlinear chains and its comparison with periodic tunneling of quantum particles in a double-well potential and with macroscopic quantum tunneling of two w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Kosevich, Y.A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/176197
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains / Y.A. Kosevich // Физика низких температур. — 2018. — Т. 44, № 7. — С. 857-865. — Бібліогр.: 53 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-176197
record_format dspace
spelling irk-123456789-1761972021-02-05T01:30:13Z Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains Kosevich, Y.A. Динамика нелинейных упругих сред We present a brief discussion of the phase-coherent dynamics of discrete breathers (intrinsic localized modes) in a system of two weakly coupled nonlinear chains and its comparison with periodic tunneling of quantum particles in a double-well potential and with macroscopic quantum tunneling of two weakly linked Bose–Einstein condensates. We consider the dynamics of relative phase of classically-tunneling discrete breathers in two weakly coupled nonlinear chains and show that the dynamics of the relative phase in the π/2 tunneling mode coincides with the experimentally observed dynamics of the relative phase of quantum particles, periodically tunneling in a double-well potential, both for noninteracting and strongly repulsively interacting particles. The observed coincidence demonstrates the correspondence between the dynamics of classical localized excitations in two weakly coupled nonlinear chains and tunneling dynamics of quantum object in the double-well potential. We show that in both π/2 and winding tunneling modes the relative phase experiences periodic jumps by π in the instants of complete depopulation of one of the weakly coupled chains or potential wells. The connection of the observed phase dynamics with the non-quantum uncertainty principle is discussed. 2018 Article Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains / Y.A. Kosevich // Физика низких температур. — 2018. — Т. 44, № 7. — С. 857-865. — Бібліогр.: 53 назв. — англ. 0132-6414 PACS: 05.45.Yv, 63.22.–m, 03.75.Lm, 74.50.+r http://dspace.nbuv.gov.ua/handle/123456789/176197 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Динамика нелинейных упругих сред
Динамика нелинейных упругих сред
spellingShingle Динамика нелинейных упругих сред
Динамика нелинейных упругих сред
Kosevich, Y.A.
Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains
Физика низких температур
description We present a brief discussion of the phase-coherent dynamics of discrete breathers (intrinsic localized modes) in a system of two weakly coupled nonlinear chains and its comparison with periodic tunneling of quantum particles in a double-well potential and with macroscopic quantum tunneling of two weakly linked Bose–Einstein condensates. We consider the dynamics of relative phase of classically-tunneling discrete breathers in two weakly coupled nonlinear chains and show that the dynamics of the relative phase in the π/2 tunneling mode coincides with the experimentally observed dynamics of the relative phase of quantum particles, periodically tunneling in a double-well potential, both for noninteracting and strongly repulsively interacting particles. The observed coincidence demonstrates the correspondence between the dynamics of classical localized excitations in two weakly coupled nonlinear chains and tunneling dynamics of quantum object in the double-well potential. We show that in both π/2 and winding tunneling modes the relative phase experiences periodic jumps by π in the instants of complete depopulation of one of the weakly coupled chains or potential wells. The connection of the observed phase dynamics with the non-quantum uncertainty principle is discussed.
format Article
author Kosevich, Y.A.
author_facet Kosevich, Y.A.
author_sort Kosevich, Y.A.
title Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains
title_short Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains
title_full Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains
title_fullStr Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains
title_full_unstemmed Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains
title_sort phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2018
topic_facet Динамика нелинейных упругих сред
url http://dspace.nbuv.gov.ua/handle/123456789/176197
citation_txt Phase dynamics of discrete breathers periodically tunneling in weakly coupled nonlinear chains / Y.A. Kosevich // Физика низких температур. — 2018. — Т. 44, № 7. — С. 857-865. — Бібліогр.: 53 назв. — англ.
series Физика низких температур
work_keys_str_mv AT kosevichya phasedynamicsofdiscretebreathersperiodicallytunnelinginweaklycouplednonlinearchains
first_indexed 2023-10-18T22:40:41Z
last_indexed 2023-10-18T22:40:41Z
_version_ 1796156144629055488