Asymptotically periodic solutions to nonlocal Cauchy problems governed by compact evolution families

This paper is devoted to a study of a class of abstract Cauchy problems for semilinear nonautonomous evolution equations involving nonlocal initial conditions. Combining the theory of evolution families and the fixed point theorem due to Krasnoselskii, as well as a decomposition technique, we prove...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Wang, R.-N., Xiang, Q.-M., Zhou, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/177037
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotically periodic solutions to nonlocal Cauchy problems governed by compact evolution families / R.-N. Wang, Q.-M. Xiang, Y. Zhou // Нелінійні коливання. — 2013. — Т. 16, № 1. — С. 14-28. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper is devoted to a study of a class of abstract Cauchy problems for semilinear nonautonomous evolution equations involving nonlocal initial conditions. Combining the theory of evolution families and the fixed point theorem due to Krasnoselskii, as well as a decomposition technique, we prove the existence of the asymptotically periodic mild solutions to such problems. Our results generalize and improve some previous results since the (locally) Lipschitz continuity on the nonlinearity is not required. A partial differential equation is also presented as an application.