Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
Для линейного оператора D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), порожденного дифференциальным уравнением d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, установлена замкнутость графика, вычислен сопряженный оператор D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . Для элементов линейных многовидов W(F)₂ ,W(F`)₂ предложен...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/177210 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами / С.М. Жук // Нелінійні коливання. — 2007. — Т. 10, № 4. — С. 464-480. — Бібліогр.: 19 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Для линейного оператора D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), порожденного дифференциальным уравнением
d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, установлена замкнутость графика, вычислен сопряженный оператор D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . Для элементов линейных многовидов W(F)₂ ,W(F`)₂ предложен аналог формулы интегрирования по частям. Получен критерий существования псевдорешения операторного уравнения Dx(·) = (f(·), f₀), сформулированы достаточные
условия нормальной разрешимости оператора D в терминах соотношений для блоков матрицы C(t). Полученные результаты проиллюстрированы примерами |
---|