Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами

Для линейного оператора D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), порожденного дифференциальным уравнением d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, установлена замкнутость графика, вычислен сопряженный оператор D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . Для элементов линейных многовидов W(F)₂ ,W(F`)₂ предложен...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Жук, С.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2007
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/177210
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами / С.М. Жук // Нелінійні коливання. — 2007. — Т. 10, № 4. — С. 464-480. — Бібліогр.: 19 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-177210
record_format dspace
spelling irk-123456789-1772102021-02-12T01:25:49Z Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами Жук, С.М. Для линейного оператора D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), порожденного дифференциальным уравнением d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, установлена замкнутость графика, вычислен сопряженный оператор D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . Для элементов линейных многовидов W(F)₂ ,W(F`)₂ предложен аналог формулы интегрирования по частям. Получен критерий существования псевдорешения операторного уравнения Dx(·) = (f(·), f₀), сформулированы достаточные условия нормальной разрешимости оператора D в терминах соотношений для блоков матрицы C(t). Полученные результаты проиллюстрированы примерами For a linear operator D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), generated by the differential equation d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, we prove that its graph is closed and we calculate the adjoint operator D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . For elements of the linear manifolds W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ , we give an analogue of the integration by part formula. We find a criterion for existence of a pseudo-solution of the operator equation Dx(·) = (f(·), f₀), and formulate sufficient conditions for normal solvability of the operator D in terms of relations between blocks of the matrix C(t). The obtained results are illustrated with examples. 2007 Article Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами / С.М. Жук // Нелінійні коливання. — 2007. — Т. 10, № 4. — С. 464-480. — Бібліогр.: 19 назв. — укр. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/177210 517.9 uk Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
description Для линейного оператора D : W(F)₂ ⊂ L(n)₂ → L(m)₂ × R(m), порожденного дифференциальным уравнением d/dt Fx (t) − C(t)x = f(t), F x(t₀) = f₀, установлена замкнутость графика, вычислен сопряженный оператор D^∗ : W(F`)₂ ⊂ L(m)₂ × R(m) → L(n)₂ . Для элементов линейных многовидов W(F)₂ ,W(F`)₂ предложен аналог формулы интегрирования по частям. Получен критерий существования псевдорешения операторного уравнения Dx(·) = (f(·), f₀), сформулированы достаточные условия нормальной разрешимости оператора D в терминах соотношений для блоков матрицы C(t). Полученные результаты проиллюстрированы примерами
format Article
author Жук, С.М.
spellingShingle Жук, С.М.
Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
Нелінійні коливання
author_facet Жук, С.М.
author_sort Жук, С.М.
title Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
title_short Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
title_full Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
title_fullStr Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
title_full_unstemmed Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
title_sort замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/177210
citation_txt Замкненість та нормальна розв'язність оператора, породженого виродженим лінійним диференціальним рівнянням зі змінними коефіцієнтами / С.М. Жук // Нелінійні коливання. — 2007. — Т. 10, № 4. — С. 464-480. — Бібліогр.: 19 назв. — укр.
series Нелінійні коливання
work_keys_str_mv AT žuksm zamknenístʹtanormalʹnarozvâznístʹoperatoraporodženogovirodženimlíníjnimdiferencíalʹnimrívnânnâmzízmínnimikoefícíêntami
first_indexed 2023-10-18T22:43:03Z
last_indexed 2023-10-18T22:43:03Z
_version_ 1796156248132943872