On higher order generalized Emden-Fowler differential equations with delay argument
In the paper the differential equation u⁽ⁿ⁾ (t) + p(t)|u(τ (t))|^(µ(t)) sign u(τ (t)) = 0, is considered. Here, we assume that n ≥ 3, p ∈ Lloc(R₊; R₋), µ ∈ C(R₊; (0, +∞)), τ ∈ C(R₊; R₊), τ (t) ≤ t for t ∈ R₊ and limt→+∞ τ (t) = +∞. In case µ(t) ≡ const > 0, oscillatory properties of equation have...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/177230 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On higher order generalized Emden-Fowler differential equations with delay argument / A. Domoshnitsky, R. Koplatadze // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 507-526 — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-177230 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1772302021-02-13T01:26:01Z On higher order generalized Emden-Fowler differential equations with delay argument Domoshnitsky, A. Koplatadze, R. In the paper the differential equation u⁽ⁿ⁾ (t) + p(t)|u(τ (t))|^(µ(t)) sign u(τ (t)) = 0, is considered. Here, we assume that n ≥ 3, p ∈ Lloc(R₊; R₋), µ ∈ C(R₊; (0, +∞)), τ ∈ C(R₊; R₊), τ (t) ≤ t for t ∈ R₊ and limt→+∞ τ (t) = +∞. In case µ(t) ≡ const > 0, oscillatory properties of equation have been extensively studied, where as if µ(t) ≢ const, to the extent of authors’ knowledge, the analogous questions have not been examined. In this paper, new sufficient conditions for the equation (∗) to have Property B are established. Розглянуто диференцiальне рiвняння u⁽ⁿ⁾ (t) + p(t)|u(τ (t))|^(µ(t)) sign u(τ (t)) = 0 (∗) де n ≥ 3, p ∈ Lloc(R₊; R₋), µ ∈ C(R₊; (0, +∞)), τ ∈ C(R₊; R₊), τ (t) ≤ t для t ∈ R₊ та limt→+∞ τ (t) = +∞. У випадку µ(t) ≡ const > 0 осциляцiйнi властивостi рiвняння (∗) було детально вивчено, тодi як у випадку µ(t) ≢ const, наскiльки вiдомо авторам, подiбнi питання не було розглянуто. У статтi наведено новi достатнi умови для того, щоб рiвняння (∗) мало властивiсть B. 2015 Article On higher order generalized Emden-Fowler differential equations with delay argument / A. Domoshnitsky, R. Koplatadze // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 507-526 — Бібліогр.: 15 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/177230 517.9 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In the paper the differential equation u⁽ⁿ⁾ (t) + p(t)|u(τ (t))|^(µ(t)) sign u(τ (t)) = 0, is considered. Here, we assume that n ≥ 3, p ∈ Lloc(R₊; R₋), µ ∈ C(R₊; (0, +∞)), τ ∈ C(R₊; R₊), τ (t) ≤ t for t ∈ R₊ and limt→+∞ τ (t) = +∞. In case µ(t) ≡ const > 0, oscillatory properties of equation have been extensively studied, where as if µ(t) ≢ const, to the extent of authors’ knowledge, the analogous questions have not been examined. In this paper, new sufficient conditions for the equation (∗) to have Property B are established. |
format |
Article |
author |
Domoshnitsky, A. Koplatadze, R. |
spellingShingle |
Domoshnitsky, A. Koplatadze, R. On higher order generalized Emden-Fowler differential equations with delay argument Нелінійні коливання |
author_facet |
Domoshnitsky, A. Koplatadze, R. |
author_sort |
Domoshnitsky, A. |
title |
On higher order generalized Emden-Fowler differential equations with delay argument |
title_short |
On higher order generalized Emden-Fowler differential equations with delay argument |
title_full |
On higher order generalized Emden-Fowler differential equations with delay argument |
title_fullStr |
On higher order generalized Emden-Fowler differential equations with delay argument |
title_full_unstemmed |
On higher order generalized Emden-Fowler differential equations with delay argument |
title_sort |
on higher order generalized emden-fowler differential equations with delay argument |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/177230 |
citation_txt |
On higher order generalized Emden-Fowler differential equations with delay argument / A. Domoshnitsky, R. Koplatadze // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 507-526 — Бібліогр.: 15 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT domoshnitskya onhigherordergeneralizedemdenfowlerdifferentialequationswithdelayargument AT koplatadzer onhigherordergeneralizedemdenfowlerdifferentialequationswithdelayargument |
first_indexed |
2023-10-18T22:43:06Z |
last_indexed |
2023-10-18T22:43:06Z |
_version_ |
1796156250251067392 |