2025-02-22T15:53:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-177242%22&qt=morelikethis&rows=5
2025-02-22T15:53:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-177242%22&qt=morelikethis&rows=5
2025-02-22T15:53:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T15:53:10-05:00 DEBUG: Deserialized SOLR response

Wong’s oscillation theorem for second-order delay differential equations

Let H(t) := ∫1/(r(s)z²(s)) (∫z(k)f(k)dk) ds, where z is a positive solution of (r(t)x')' + q(t)x = 0, t ≥ a, satisfying ∫1 / (r(s)z²(s)) ds < ∞. It is well known that, see [J. S. W. Wong, J. Math. Anal. and Appl. — 1999. — 231. — P. 235 – 240], if limt→∞ H(t) = − lim t→∞ H...

Full description

Saved in:
Bibliographic Details
Main Authors: Özbekler, A., Zafer, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2016
Series:Нелінійні коливання
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/177242
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items

2025-02-22T15:53:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-177242%22&qt=morelikethis
2025-02-22T15:53:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-177242%22&qt=morelikethis
2025-02-22T15:53:10-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T15:53:10-05:00 DEBUG: Deserialized SOLR response