Multiple solutions of boundary-value problems for Hamiltonian systems

We consider two-point boundary-value problems for Hamiltonian system of the form x' = f(k, y), y' = g(x, λ), where k and λ are parameters. We estimate the number of solutions, both positive and oscillatory, for the boundary-value problems. Our main tool is the phase plane analysis combined...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Kirichuka, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/177301
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multiple solutions of boundary-value problems for Hamiltonian systems / A. Kirichuka // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 184-197 — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider two-point boundary-value problems for Hamiltonian system of the form x' = f(k, y), y' = g(x, λ), where k and λ are parameters. We estimate the number of solutions, both positive and oscillatory, for the boundary-value problems. Our main tool is the phase plane analysis combined with evaluations of time map functions. The bifurcation diagram and solution curves for Hamiltonian system are constructed. Examples are considered illustrating bifurcations with respect to the parameters k and λ.