Multiple solutions of boundary-value problems for Hamiltonian systems
We consider two-point boundary-value problems for Hamiltonian system of the form x' = f(k, y), y' = g(x, λ), where k and λ are parameters. We estimate the number of solutions, both positive and oscillatory, for the boundary-value problems. Our main tool is the phase plane analysis combined...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/177301 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Multiple solutions of boundary-value problems for Hamiltonian systems / A. Kirichuka // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 184-197 — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We consider two-point boundary-value problems for Hamiltonian system of the form x' = f(k, y), y' = g(x, λ), where k and λ are parameters. We estimate the number of solutions, both positive and oscillatory, for the boundary-value problems. Our main tool is the phase plane analysis combined with evaluations of time map functions. The bifurcation diagram and solution curves for Hamiltonian system are constructed. Examples are considered illustrating bifurcations with respect to the parameters k and λ. |
---|