Implicit difference methods for first order partial differential functional equations

We present a new class of numerical methods for quasilinear first order partial functional differential equations. The numerical methods are difference schemes which are implicit with respect to time variable. We give a complete convergence analysis for the methods and we show by an example that th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Kepczynska, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/177887
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Implicit difference methods for first order partial differential functional equations / A. Kepczynska // Нелінійні коливання. — 2005. — Т. 8, № 2. — С. 201-215. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We present a new class of numerical methods for quasilinear first order partial functional differential equations. The numerical methods are difference schemes which are implicit with respect to time variable. We give a complete convergence analysis for the methods and we show by an example that the new methods are considerably better than the explicit schemes. The proof of the stability is based on a comparison technique with nonlinear estimates of the Perron type for given operators with respect to the functional variable.