2025-02-24T21:00:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-178018%22&qt=morelikethis&rows=5
2025-02-24T21:00:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-178018%22&qt=morelikethis&rows=5
2025-02-24T21:00:59-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-24T21:00:59-05:00 DEBUG: Deserialized SOLR response
On invariant torus of weakly connected systems of differential equations
We consider a family of systems of differential equations depending on a sufficiently small parameter with zero value of which we obtained a couple of independent systems. We used the method of Green – Samoilenko function to construct an invariant manifold of the pertubed system and presented some...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2005
|
Series: | Нелінійні коливання |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/178018 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-178018 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1780182021-02-18T01:27:55Z On invariant torus of weakly connected systems of differential equations Elnazarov, A. We consider a family of systems of differential equations depending on a sufficiently small parameter with zero value of which we obtained a couple of independent systems. We used the method of Green – Samoilenko function to construct an invariant manifold of the pertubed system and presented some examples for application. Розглянуто сiм’ю систем диференцiальних рiвнянь, що залежать вiд достатньо малого параметра, яка є парою незалежних систем, якщо значення параметра дорiвнює нулю. Використано метод функцiї Грiна – Самойленка для побудови iнварiантного многовиду збуреної системи та наведено приклади. 2005 Article On invariant torus of weakly connected systems of differential equations / A. Elnazarov // Нелінійні коливання. — 2005. — Т. 8, № 4. — С. 468-489. — Бібліогр.: 12 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/178018 517.9 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider a family of systems of differential equations depending on a sufficiently small parameter
with zero value of which we obtained a couple of independent systems. We used the method of Green –
Samoilenko function to construct an invariant manifold of the pertubed system and presented some examples for application. |
format |
Article |
author |
Elnazarov, A. |
spellingShingle |
Elnazarov, A. On invariant torus of weakly connected systems of differential equations Нелінійні коливання |
author_facet |
Elnazarov, A. |
author_sort |
Elnazarov, A. |
title |
On invariant torus of weakly connected systems of differential equations |
title_short |
On invariant torus of weakly connected systems of differential equations |
title_full |
On invariant torus of weakly connected systems of differential equations |
title_fullStr |
On invariant torus of weakly connected systems of differential equations |
title_full_unstemmed |
On invariant torus of weakly connected systems of differential equations |
title_sort |
on invariant torus of weakly connected systems of differential equations |
publisher |
Інститут математики НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/178018 |
citation_txt |
On invariant torus of weakly connected systems of differential equations / A. Elnazarov // Нелінійні коливання. — 2005. — Т. 8, № 4. — С. 468-489. — Бібліогр.: 12 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT elnazarova oninvarianttorusofweaklyconnectedsystemsofdifferentialequations |
first_indexed |
2023-10-18T22:45:01Z |
last_indexed |
2023-10-18T22:45:01Z |
_version_ |
1796156334422360064 |