Singular periodic impulse problems
We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume tha...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/178156 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-178156 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1781562021-02-19T01:26:55Z Singular periodic impulse problems Halas, Z. Tvrdy, M. We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R and Ji , Mi , i = 1, 2, . . . , m, are continuous mappings of G[0, T] × G[0, T] into R, where G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manasevich ´ and Mawhin for singular periodic problems with p-Laplacian. Отримано принцип iснування розв’язку перiодичної граничної задачi з iмпульсною дiєю, u’’ + c u’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u”(T), де g ∈ C(0,∞) може мати сильну особливiсть у нулi. Далi, припускається, що 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R i Ji , Mi , i = 1, 2, . . . , m, — неперервнi вiдображення з G[0, T] × G[0, T] в R, де G[0, T] — простiр функцiй, регульованих на [0, T]. Отримання принципу базується на процедурi усереднення, яка є аналогом процедури, запро- понованої Менасевiчем та Мавхiним, для сингулярних перiодичних задач iз p-лапласiаном. 2008 Article Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/178156 517.9 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R and Ji , Mi , i = 1, 2, . . . , m, are continuous mappings of G[0, T] × G[0, T] into R, where G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manasevich ´ and Mawhin for singular periodic problems with p-Laplacian. |
format |
Article |
author |
Halas, Z. Tvrdy, M. |
spellingShingle |
Halas, Z. Tvrdy, M. Singular periodic impulse problems Нелінійні коливання |
author_facet |
Halas, Z. Tvrdy, M. |
author_sort |
Halas, Z. |
title |
Singular periodic impulse problems |
title_short |
Singular periodic impulse problems |
title_full |
Singular periodic impulse problems |
title_fullStr |
Singular periodic impulse problems |
title_full_unstemmed |
Singular periodic impulse problems |
title_sort |
singular periodic impulse problems |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/178156 |
citation_txt |
Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT halasz singularperiodicimpulseproblems AT tvrdym singularperiodicimpulseproblems |
first_indexed |
2023-10-18T22:45:23Z |
last_indexed |
2023-10-18T22:45:23Z |
_version_ |
1796156348676702208 |