Implicit difference methods for parabolic functional differential problems of the Neumann type
Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type are considered. A general class of difference methods for the problem is constructed. Theorems on the convergence of difference schemes and error estimates of approximate solutions are presen...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/178201 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Implicit difference methods for parabolic functional differential problems of the Neumann type / K. Kropielnicka // Нелінійні коливання. — 2008. — Т. 11, № 3. — С. 329-347. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann
type are considered. A general class of difference methods for the problem is constructed. Theorems on
the convergence of difference schemes and error estimates of approximate solutions are presented. The
proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear
estimates of the Perron type with respect to the functional variable for given functions are used. Numerical
examples are given. |
---|