Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction

We consider a mixed boundary-value problem for the Poisson equation in a plane two-level junction Ωε, which is the union of a domain Ω₀ and a large number 3N of thin rods with thickness of order ε = O(N⁻¹). The thin rods are divided into two levels depending on their length. In addition, the thin ro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Durante, T., Mel'nyk, T.A., Vashchuk, P.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/178375
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction / T. Durante, T.A. Mel'nyk, P.S. Vashchuk // Нелінійні коливання. — 2006. — Т. 9, № 3. — С. 336-355. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-178375
record_format dspace
spelling irk-123456789-1783752021-02-19T01:27:57Z Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction Durante, T. Mel'nyk, T.A. Vashchuk, P.S. We consider a mixed boundary-value problem for the Poisson equation in a plane two-level junction Ωε, which is the union of a domain Ω₀ and a large number 3N of thin rods with thickness of order ε = O(N⁻¹). The thin rods are divided into two levels depending on their length. In addition, the thin rods from each level are ε-periodically alternated. The uniform Dirichlet conditions and the nonuniform Neumann conditions are given respectively on the sides of the thin rods from the first level and the second level. Using the method of matched asymptotic expansions and special junction-layer solutions, we construct the asymptotic approximation for the solution and prove the corresponding estimates in the Sobolev space H¹ (Ωε) as ε → 0 (N → +∞). Розглядається мiшана крайова задача для рiвняння Пуассона у плоскому дворiвневому з’єднаннi Ωε, яке є об’єднанням деякої областi Ω₀ та великої кiлькостi 3N тонких стержнiв з товщиною порядку ε = O(N⁻¹). Тонкi стержнi роздiлено на два рiвнi в залежностi вiд їх довжини, i стержнi з кожного рiвня ε-перiодично чергуються. На сторонах тонких стержнiв з першого рiвня задано однорiднi крайовi умови Дiрiхле, а на сторонах стержнiв другого рiвня — неоднорiднi крайовi умови Неймана. З допомогою методу узгодження асимптотичних розвинень та спецiальних розв’язкiв типу примежового шару в зонi з’єднання побудовано асимптотичне наближення для розв’язку даної задачi та доведено вiдповiднi асимптотичнi оцiнки у просторi Соболєва H¹ (Ωε) при ε → 0 (N → +∞). 2006 Article Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction / T. Durante, T.A. Mel'nyk, P.S. Vashchuk // Нелінійні коливання. — 2006. — Т. 9, № 3. — С. 336-355. — Бібліогр.: 22 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/178375 517.956 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider a mixed boundary-value problem for the Poisson equation in a plane two-level junction Ωε, which is the union of a domain Ω₀ and a large number 3N of thin rods with thickness of order ε = O(N⁻¹). The thin rods are divided into two levels depending on their length. In addition, the thin rods from each level are ε-periodically alternated. The uniform Dirichlet conditions and the nonuniform Neumann conditions are given respectively on the sides of the thin rods from the first level and the second level. Using the method of matched asymptotic expansions and special junction-layer solutions, we construct the asymptotic approximation for the solution and prove the corresponding estimates in the Sobolev space H¹ (Ωε) as ε → 0 (N → +∞).
format Article
author Durante, T.
Mel'nyk, T.A.
Vashchuk, P.S.
spellingShingle Durante, T.
Mel'nyk, T.A.
Vashchuk, P.S.
Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction
Нелінійні коливання
author_facet Durante, T.
Mel'nyk, T.A.
Vashchuk, P.S.
author_sort Durante, T.
title Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction
title_short Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction
title_full Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction
title_fullStr Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction
title_full_unstemmed Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction
title_sort asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/178375
citation_txt Asymptotic approximation for the solution to a boundary-value problem with varying type of boundary conditions in a thick two-level junction / T. Durante, T.A. Mel'nyk, P.S. Vashchuk // Нелінійні коливання. — 2006. — Т. 9, № 3. — С. 336-355. — Бібліогр.: 22 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT durantet asymptoticapproximationforthesolutiontoaboundaryvalueproblemwithvaryingtypeofboundaryconditionsinathicktwoleveljunction
AT melnykta asymptoticapproximationforthesolutiontoaboundaryvalueproblemwithvaryingtypeofboundaryconditionsinathicktwoleveljunction
AT vashchukps asymptoticapproximationforthesolutiontoaboundaryvalueproblemwithvaryingtypeofboundaryconditionsinathicktwoleveljunction
first_indexed 2023-10-18T22:45:22Z
last_indexed 2023-10-18T22:45:22Z
_version_ 1796156350680530944