Об асимптотических свойствах решений линейных дифференциально-функциональных уравнений с линейно преобразованным аргументом

Встановлено новi властивостi розв’язкiв диференцiально-функцiонального рiвняння x'(t) = ax(t) + bx(t − r) + cx' (t − r) + px(qt) + hx' (qt) в околi особливої точки t = +∞.

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Бельский, Д.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2008
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/178570
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Об асимптотических свойствах решений линейных дифференциально-функциональных уравнений с линейно преобразованным аргументом / Д.В. Бельский // Нелінійні коливання. — 2008. — Т. 11, № 2. — С. 147-150. — Бібліогр.: 14 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Встановлено новi властивостi розв’язкiв диференцiально-функцiонального рiвняння x'(t) = ax(t) + bx(t − r) + cx' (t − r) + px(qt) + hx' (qt) в околi особливої точки t = +∞.