Phase chaos and multistability in the discrete Kuramoto model

The paper describes the appearance of a novel, a high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear intera...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Maistrenko, V.L., Vasylenko, A.A., Maistrenko, Y.L., Mosekilde, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/178576
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Phase chaos and multistability in the discrete Kuramoto model / V.L. Maistrenko, A.A. Vasylenko, Y.L. Maistrenko, E. Mosekilde // Нелінійні коливання. — 2008. — Т. 11, № 2. — С. 217-229. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The paper describes the appearance of a novel, a high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear interaction of the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional discrete Kuramoto model we outlined the region of the phase chaos in the parameter plane and distinguished the region where the phase chaos coexists with other periodic attractors, and demonstrate, in addition, that the transition to the phase chaos takes place through the torus destruction scenario.