2025-02-23T13:34:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-178576%22&qt=morelikethis&rows=5
2025-02-23T13:34:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-178576%22&qt=morelikethis&rows=5
2025-02-23T13:34:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:34:34-05:00 DEBUG: Deserialized SOLR response

Phase chaos and multistability in the discrete Kuramoto model

The paper describes the appearance of a novel, a high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear intera...

Full description

Saved in:
Bibliographic Details
Main Authors: Maistrenko, V.L., Vasylenko, A.A., Maistrenko, Y.L., Mosekilde, E.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Series:Нелінійні коливання
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/178576
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper describes the appearance of a novel, a high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear interaction of the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional discrete Kuramoto model we outlined the region of the phase chaos in the parameter plane and distinguished the region where the phase chaos coexists with other periodic attractors, and demonstrate, in addition, that the transition to the phase chaos takes place through the torus destruction scenario.