Використання методів машинного навчання для оцінки вартості житла

Мета роботи. Для оцінки вартості житла у місті Києві застосовано підхід, що базується на нечіткій логіці. Нечіткі методи дозволяють застосовувати лінгвістичний опис складних процесів, встановлювати нечіткі взаємозв'язки між поняттями, прогнозувати поведінку системи, створювати набір альтернатив...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Третиник, В.В., Возняк, А.Т., Домрачев, В.М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2021
Назва видання:Кібернетика та комп’ютерні технології
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/179355
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Використання методів машинного навчання для оцінки вартості житла / В.В. Третиник, А.Т. Возняк, В.М. Домрачев // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2021. — № 1. — С. 67-73. — Бібліогр.: 8 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Мета роботи. Для оцінки вартості житла у місті Києві застосовано підхід, що базується на нечіткій логіці. Нечіткі методи дозволяють застосовувати лінгвістичний опис складних процесів, встановлювати нечіткі взаємозв'язки між поняттями, прогнозувати поведінку системи, створювати набір альтернативних дій, формально описувати нечіткі правила прийняття рішень. Результати. Виконана програмна реалізація моделі на мові програмування Python. Дані для моделювання взяті за період липень–жовтень 2020 року з єдиної бази звітів про оцінку майна. Вибірка містила 2133 записи, вона відфільтрована, поділена на навчальну та тестову у пропорції 85 : 15. Для оцінки якості роботи програми розраховано середню відносну похибку розробленої моделі.