2025-02-22T17:15:50-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-180486%22&qt=morelikethis&rows=5
2025-02-22T17:15:50-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-180486%22&qt=morelikethis&rows=5
2025-02-22T17:15:50-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T17:15:50-05:00 DEBUG: Deserialized SOLR response
Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами
Аналізується надійність відтворення каузальних моделей зі статистичних даних методами, основаними на незалежності. Показано механізми виникнення неадекватності моделі внаслідок недосконалості та неповноти емпіричних даних. Розкрито специфічні проблеми виведення (розпізнавання) спрямованості впливів...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | Ukrainian |
Published: |
Інститут програмних систем НАН України
2020
|
Series: | Проблеми програмування |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/180486 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-180486 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1804862021-09-30T01:26:30Z Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами Балабанов, О.С. Методи машинного навчання Аналізується надійність відтворення каузальних моделей зі статистичних даних методами, основаними на незалежності. Показано механізми виникнення неадекватності моделі внаслідок недосконалості та неповноти емпіричних даних. Розкрито специфічні проблеми виведення (розпізнавання) спрямованості впливів між змінними в ситуації, коли деякі причини є прихованими. Виявлено некоректність відомого правила виведення спрямованості (орієнтації) зв'язків в умовах прихованих змінних. Запропоновано корекцію розглянутого правила для уникнення можливих помилок. Анализируется надежность восстановления каузальных моделей из статистических данных методами, основанными на независимости. Показаны механизмы возникновения неадекватности модели вследствие несовершенства и неполноты эмпирических данных. Раскрыты специфические проблемы вывода (распознавания) направленности влияний между переменными в ситуации, когда некоторые причини являются скрытыми. Выявлена некорректность известного правила вывода направленности (ориентации) связей в условиях скрытых переменных. Предложена коррекция рассмотренного правила для исключения возможных ошибок The reliability of causal inference from data (by independence-based methods) is analyzed. We uncover some mechanisms which may result in model inadequacy due to sample bias and hidden variables. We detect some specific problems in recognition of direction of influence when some causes are hidden. Incorrectness of known rule for edge orientation (under causal insufficiency) is revealed. We suggest the correction to the rule aiming to retain model adequacy 2020 Article Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами / О.С. Балабанов // Проблеми програмування. — 2020. — № 2-3. — С. 392-406. — Бібліогр.: 13 назв. — укр. 1727-4907 DOI: https://doi.org/10.15407/pp2020.02-03.392 http://dspace.nbuv.gov.ua/handle/123456789/180486 004.855:519.216 uk Проблеми програмування Інститут програмних систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Ukrainian |
topic |
Методи машинного навчання Методи машинного навчання |
spellingShingle |
Методи машинного навчання Методи машинного навчання Балабанов, О.С. Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами Проблеми програмування |
description |
Аналізується надійність відтворення каузальних моделей зі статистичних даних методами, основаними на незалежності. Показано механізми виникнення неадекватності моделі внаслідок недосконалості та неповноти емпіричних даних. Розкрито специфічні проблеми виведення (розпізнавання) спрямованості впливів між змінними в ситуації, коли деякі причини є прихованими. Виявлено некоректність відомого правила виведення спрямованості (орієнтації) зв'язків в умовах прихованих змінних. Запропоновано корекцію розглянутого правила для уникнення можливих помилок. |
format |
Article |
author |
Балабанов, О.С. |
author_facet |
Балабанов, О.С. |
author_sort |
Балабанов, О.С. |
title |
Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами |
title_short |
Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами |
title_full |
Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами |
title_fullStr |
Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами |
title_full_unstemmed |
Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами |
title_sort |
відтворення казуальних моделей з даних. проблеми адекватності структур з прихованими причинами |
publisher |
Інститут програмних систем НАН України |
publishDate |
2020 |
topic_facet |
Методи машинного навчання |
url |
http://dspace.nbuv.gov.ua/handle/123456789/180486 |
citation_txt |
Відтворення казуальних моделей з даних. Проблеми адекватності структур з прихованими причинами / О.С. Балабанов // Проблеми програмування. — 2020. — № 2-3. — С. 392-406. — Бібліогр.: 13 назв. — укр. |
series |
Проблеми програмування |
work_keys_str_mv |
AT balabanovos vídtvorennâkazualʹnihmodelejzdanihproblemiadekvatnostístrukturzprihovanimipričinami |
first_indexed |
2023-10-18T22:50:07Z |
last_indexed |
2023-10-18T22:50:07Z |
_version_ |
1796156558713815040 |