Нейросетевая аппроксимация нелинейных зашумленных функций на основе коэволюционного кооперативно-конкурентного подхода
Предложен эволюционный алгоритм аппроксимации нелинейных зашумленных функций, основанный на коэволюционных моделях кооперации и конкуренции. Алгоритм реализует среду, способствующую сотрудничеству и конкуренции популяций, в которых каждый человек является нейросетью прямого распространения, который...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2018
|
Назва видання: | Проблемы управления и информатики |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/180580 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Нейросетевая аппроксимация нелинейных зашумленных функций на основе коэволюционного кооперативно-конкурентного подхода / О.Г. Руденко, А.А. Бессонов // Проблемы управления и информатики. — 2018. — № 3. — С. 5-15. — Бібліогр.: 12 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Предложен эволюционный алгоритм аппроксимации нелинейных зашумленных функций, основанный на коэволюционных моделях кооперации и конкуренции. Алгоритм реализует среду, способствующую сотрудничеству и конкуренции популяций, в которых каждый человек является нейросетью прямого распространения, который решает специфическую задачу. Для аппроксимации исследуемой функции предлагается использовать популяции универсальных апроксиматоров, а для борьбы с возможными помехами - ввести дополнительную популяцию автоэнкодеров, устраняющую помехи. Приведены результаты имитационного моделирования, подтверждающие эффективность предложенного метода аппроксимации нелинейных зашумленных функций. |
---|