Исследование устойчивости, равномерной по запаздыванию, ненулевого положения равновесия одной модели популяции

В статье рассмотрены системы дифференциальных уравнений c квадратичной правой частью, с запаздывающим аргументом и без него. Подобными уравнениями описываются динамические модели типа хищник–жертва. С помощью прямого метода Ляпунова и LMI-техники исследовано качественное поведение решений. Построен...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Пужа, Б., Хусаинов, Д.Я., Новотна, В., Шатырко, А.В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2018
Назва видання:Проблемы управления и информатики
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/180617
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Исследование устойчивости, равномерной по запаздыванию, ненулевого положения равновесия одной модели популяции / Б. Пужа, Д.Я. Хусаинов, В. Новотна, А.В. Шатырко // Проблемы управления и информатики. — 2018. — № 5. — С. 103-113. — Бібліогр.: 9 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:В статье рассмотрены системы дифференциальных уравнений c квадратичной правой частью, с запаздывающим аргументом и без него. Подобными уравнениями описываются динамические модели типа хищник–жертва. С помощью прямого метода Ляпунова и LMI-техники исследовано качественное поведение решений. Построен фазовый портрет соответствующей системы без запаздывания. Проведено исследование устойчивости ненулевого стационарного положения равновесия системы с запаздыванием. Доказаны достаточные условия асимптотической устойчивости решений. Результаты проиллюстрированы на примерах.