Исследование устойчивости, равномерной по запаздыванию, ненулевого положения равновесия одной модели популяции
В статье рассмотрены системы дифференциальных уравнений c квадратичной правой частью, с запаздывающим аргументом и без него. Подобными уравнениями описываются динамические модели типа хищник–жертва. С помощью прямого метода Ляпунова и LMI-техники исследовано качественное поведение решений. Построен...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2018
|
Назва видання: | Проблемы управления и информатики |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/180617 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Исследование устойчивости, равномерной по запаздыванию, ненулевого положения равновесия одной модели популяции / Б. Пужа, Д.Я. Хусаинов, В. Новотна, А.В. Шатырко // Проблемы управления и информатики. — 2018. — № 5. — С. 103-113. — Бібліогр.: 9 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В статье рассмотрены системы дифференциальных уравнений c квадратичной правой частью, с запаздывающим аргументом и без него. Подобными уравнениями описываются динамические модели типа хищник–жертва. С помощью прямого метода Ляпунова и LMI-техники исследовано качественное поведение решений. Построен фазовый портрет соответствующей системы без запаздывания. Проведено исследование устойчивости ненулевого стационарного положения равновесия системы с запаздыванием. Доказаны достаточные условия асимптотической устойчивости решений. Результаты проиллюстрированы на примерах. |
---|