Кластеризация совокупности составных нечетких чисел на основе множеств скалярного и векторного уровней
Предложен новый способ формализации нечеткости в виде составных нечетких чисел. Рассмотрена аксиоматика такого представления, введено понятие множеств скалярного и векторного уровней, сформулированы процедуры для вычисления расстояний между данными. На основе разработанных моделей и методов рассмотр...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2018
|
Назва видання: | Проблемы управления и информатики |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/180619 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Кластеризация совокупности составных нечетких чисел на основе множеств скалярного и векторного уровней / E.В. Ивохин, Д.В. Апанасенко // Проблемы управления и информатики. — 2018. — № 5. — С. 136-147. — Бібліогр.: 14 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Предложен новый способ формализации нечеткости в виде составных нечетких чисел. Рассмотрена аксиоматика такого представления, введено понятие множеств скалярного и векторного уровней, сформулированы процедуры для вычисления расстояний между данными. На основе разработанных моделей и методов рассмотрены и решены задачи группирования состояний нечеткой системы, описанных совокупностью составных нечетких чисел, на основе множеств скалярного и векторного уровня. Основная идея разработанных алгоритмов кластеризации состоит в вычислении и использовании значений расстояния между элементами соответствующих множеств заданного скалярного или векторного уровня с учетом величины погрешности, которая определяется на прямоугольной сетке, накрывающей множество исходных данных. Предложенные алгоритмы позволяют формализовать поиск кластерных центров совокупности составных нечетких чисел и реализовать процедуры группирования данных в пределах предварительно заданного или автоматически сгенерированного по ходу алгоритма количества кластеров. Рассмотрены условия наиболее оптимального использования алгоритмов кластеризации. Предложенный подход является модификацией существующих методов кластеризации, адаптированных к обработке нечетких данных специального вида. Приведены примеры использования данного подхода при решении практических задач, проанализированы результаты численных экспериментов. |
---|