О нестационарной задаче управления движением в конфликтной ситуации

Математическая теория управления в условиях конфликта и неопределенности содержит широкий круг фундаментальных методов для управления динамическими процессами различной природы. В этой статье изучена игровая задача преследования для нестационарных управляемых процессов общего вида с цилиндрическим т...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Пепеляев, В.А., Чикрий, Ал.А., Чикрий, К.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2019
Назва видання:Проблемы управления и информатики
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/180822
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О нестационарной задаче управления движением в конфликтной ситуации / В.А. Пепеляев, Ал.А. Чикрий, К.А. Чикрий // Проблемы управления и информатики. — 2019. — № 4. — С. 84-93. — Бібліогр.: 28 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Математическая теория управления в условиях конфликта и неопределенности содержит широкий круг фундаментальных методов для управления динамическими процессами различной природы. В этой статье изучена игровая задача преследования для нестационарных управляемых процессов общего вида с цилиндрическим терминальным множеством. Исследование тесно связано с первым прямым методом Л.С. Понтрягина и методом разрешающих функций. Целью работы является вывод достаточных условий завершения игры за некоторое гарантированное время в пользу первого игрока и выбор управления, реализующего этот результат.