Information Technology for Classification of Donosological and Pathological States Using the Ensemble of Data Mining Methods

The purpose of the paper is to develop information technology for the classification of human health states using an set of Data Mining methods and to carry out its validation on examples of a operators` functional state and patient's disease severity. Results. The developed IT unites several s...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Kryvova, O.A., Kozak, L.M.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України 2021
Назва видання:Cybernetics and computer engineering
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/181418
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Information Technology for Classification of Donosological and Pathological States Using the Ensemble of Data Mining Methods / O.A. Kryvova, L.M. Kozak // Cybernetics and computer engineering. — 2021. — № 1 (203). — С. 77-96. — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The purpose of the paper is to develop information technology for the classification of human health states using an set of Data Mining methods and to carry out its validation on examples of a operators` functional state and patient's disease severity. Results. The developed IT unites several stages: I — data pre-processing; II — clustering, selecting the homogeneous groups (data segmentation); III — predictors` identification; IV — classifying the studied states, development of predictive models using machine learning algorithms (Decision trees, Support vector machines, neural networks) and the method crossvalidation. The proposed IT was used to classify the operators` functional statе and the patients` severity in case of disease progression.