Dirichlet problem with measurable data for semilinear equations in the plane
The study of the Dirichlet problem with arbitrary measurable data for harmonic functions in the unit disk D goes to the known dissertation of Luzin. His result was formulated in terms of angular limits (along nontangent paths) that are a traditional tool for the research of the boundary behavior i...
Збережено в:
Дата: | 2022 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2022
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/184925 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dirichlet problem with measurable data for semilinear equations in the plane / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2022. — № 1. — С. 11-19. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The study of the Dirichlet problem with arbitrary measurable data for harmonic functions in the unit disk D goes to
the known dissertation of Luzin. His result was formulated in terms of angular limits (along nontangent paths)
that are a traditional tool for the research of the boundary behavior in the geometric function theory. With a view to
further developments of the theory of boundary-value problems for semilinear equations, the present paper is devoted
to the Dirichlet problem with arbitrary measurable (over logarithmic capacity) boundary data for quasilinear
Poisson equations in such Jordan domains. For this purpose, it is firstly constructed completely continuous operators
generating nonclassical solutions of the Dirichlet boundary-value problem with arbitrary measurable data
for the Poisson equations ΔU =G over the sources G ∈Lᵖ , p >1. The latter makes it possible to apply the Leray—
Schauder approach to the proof of theorems on the existence of regular nonclassical solutions of the measurable
Dirichlet problem for quasilinear Poisson equations of the form ΔU (z ) =H (z )⋅Q(U (z )) for multipliers H ∈Lᵖ
with p >1 and continuous functions Q :ℝ→ℝ with Q(t ) /t →0 as t →∞.
These results can be applied to some specific quasilinear equations of mathematical physics, arising under a
modeling of various physical processes such as the diffusion with absorption, plasma states, stationary burning, etc.
These results can be also applied to semilinear equations of mathematical physics in anisotropic and inhomogeneous
media. |
---|