Incremental digital quasi-ideal integrator application for advance flux estimation of controled induction machine

The performance of the speed controlled induction machine principally depends on the accuracy of the estimated flux. The proposed method compensates the error produced by the inherent problem in the “pure” integrator and measurement error. This paper describes the problem associated with a quasi-ide...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Ustun, O., Ali-Zade, P., Mamedov, G., Radjabli, Kiamran
Формат: Стаття
Мова:English
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2008
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/18690
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Incremental digital quasi-ideal integrator application for advance flux estimation of controled induction machine / O. Ustun, P. Ali-Zade, G. Mamedov, Radjabli Kiamran // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2008. — Вип. 1. — С. 174-187. — Бібліогр.: 22 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The performance of the speed controlled induction machine principally depends on the accuracy of the estimated flux. The proposed method compensates the error produced by the inherent problem in the “pure” integrator and measurement error. This paper describes the problem associated with a quasi-ideal digital integrator in particularly a modern DDA-type (Digital Differential Analyzer) – an incremental digital integrator (IDI). The paper essentially discusses the development of the approach to the total error correction of DDA-type IDI. It is an element for processing incremental digital input-output signals using DDA principles. The basic types of errors of the incremental digital integrator are presented and then the reasons for their appearance are examined. The differential equation dY=aYdx as an example the quantitative relation of errors is investigated. The IDI error from the analytical solution is not exceeding one increment (quant) of sub-integral function Y even during a very long interval of integration variable x. This means that the IDI becomes a practically ideal integrator. The suggested methods of correcting IDI errors can be applied in simulation, modeling, especially for dynamic systems control, etc. This method is easily applied in a DSP based induction machine control to estimate the flux.